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ABSTRACT 
A numerical study is reported of natural convection melting of ice within a vertical cylinder. A stream 
function-vorticity-temperature formulation is employed in conjunction with body-fitted coordinates for 
tracking the irregular shape of the timewise varying solid-liquid interface. A parabolic density profile versus 
temperature is assumed for water. Numerical experiments are carried out for a temperature of the cylinder 
wall ranging from 4°C to 10°C. Results show that natural convection heat transfer involving density 
anomaly leads to complex flow patterns and strongly affects the time evolution of the phase front. The 
maximum Nusselt number at the heated cylinder wall is obtained for Tw = 4°C while the minimum is 
observed for Tw = 8°C. 
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NOMENCLATURE 

αn coefficient of thermal expansion, ρ pressure, 
A aspect rat io, H/r0, P grids control function, ξ, 
cp specific heat, Pr Prandt l number , v/α , 
F0 Fourier number αt/r2

0, q heat transfer rate a t the heated wall, 
g acceleration of gravity, Q grids control function, η 
g11 ξ2

r + ξ2
z, Ra1 Rayleigh number defined by (15), 

g12 ξrηr + ξzηz, Ra2 Rayleigh number defined by (16), 
g22 η2

r + η2
z, r radial coordinate , 

h latent heat , r0 radius of the ice cylinder, 
H height of cylinder, R radius in dimensionless form, r/r0, 
J-1 ξrηz - ξrηz, Ste Stefan number , cp(Tw - T f) /h , 
k thermal conductivity, t time, 
n normal coordinate to the interface, T temperature, 
N order of thermal expansion N = 2, u, v radial aud axial velocities, 
Nu Nusselt number, q/(Hk∆T), U, V dimensionless velocities, 
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Ū, contravariant velocities, v kinematic viscosity, 
Vf molten fraction, ρ density of water, 
z axial coordinate, τ dimensionless time Ste - Fo, 
Z dimensionless axial coordinate, z/r0 ψ stream function, 

ω vorticity 
Greek letters 

Laplacian in non-dimensional cylindrical 
α thermal diffusivity, k/pcp, coordinates, 

β thermal expansion coefficient, transformed Laplacian. 
ξ, η coordinate in transformed plane, 
ξr rη/J, 
ξz -rη/J, 
ηr -zξ/J, Subscripts 
ξr ξrrt + ξzzt, f fusion, 
ηt ηrrt + ηzrt, m maximum density of water, 
0 dimensionless temperature, r reference point, 

(T — Tf)/(TW — Tf), w cylinder wall. 

INTRODUCTION 

In recent years, the problem of ice melting has received increasing research attention. The interest 
for this problem lies in its numerous naturally occurring and technology processes. 

It is well known that natural convection plays a significant role during the melting process. 
Natural convection increases the heat transfer rate and therefore the melting rate and affects 
the shape and the motion of the solid-liquid interface. For most phase change materials (PCMs), 
the density of the melt varies linearly with temperature. Hotter fluid is lighter while colder fluid 
is heavier. Unlike these normal fluids, pure water exhibits, however, an eccentric behaviour, 
namely the non-linear variation of its density with temperature. The effect of the density anomaly 
of water at about 4°C on natural convection is of special interest. Flow reversal may occur in 
the melt region and there may exist a minimum heat transfer rate. Tkachev1 appears to be the 
first worker to have noticed this peculiar nature of the maximum density boundary layer. By 
using photographic techniques, he found a minimum Nusselt number for melting of an ice 
cylinder at Tw = 5.5°C. On the other hand, Saitoh2 conducted theoretical and experimental 
work with a horizontal ice cylinder immersed in water. He found that the Nusselt number reaches 
a minimum value when the wall temperature was about 6.0°C. While studying the same problem 
in full three-dimensions, Saitoh and Hirose3 observed an instability in the flow for a wall 
temperature ranging from 5.5°C to 6.5°C. 

A theoretical study performed by Merk4 predicted a minimum Nusselt number for the melting 
of a sphere at Tw = 5.31°C. These predictions are supported by the experimental work of Dumore 
et al.5. A similar study carried out by Vanier et al.6 yielded a minimum Nusselt number at 
Tw = 5.35°C. 

Herman et al.7 studied experimentally the influence of density inversion on the melting of ice 
around a horizontal heated cylinder. They reported a critical condition of the melting process 
at Tw = 8°C. For Tw > 8°C natural convection occurs mainly in the upper region of the melt 
while for Tw < 8°C, melting occurs in the lower part. Ho and Chen8 studied the same case 
numerically. They found that the minimum heat transfer rate does not always occur for Tw = 8°C 
which is contrary to the results obtained by Herrmann. Heat transfer during melting of ice 
confined within a heated horizontal cylinder was studied experimentally and theoretically by 
Rieger et al.9. Two inner diameters of the cylinder were considered. For both radii, heat transfer 
reached a minimum value at about Tw = 8°C. 
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In the present study, a numerical analysis is reported for natural convection dominated melting 
of a vertical ice cylinder involving density anomaly. The computational methodology is first 
presented and then simulations are carried out for a temperature of the cylinder wall ranging 
from 4°C to 10°C. Emphasis is placed on the influence of the density anomaly upon phase-change 
on the convective flow patterns and on the time evolution of the solid-liquid interface. 

GOVERNING EQUATIONS 

The PCM, i.e., ice, is contained in a cylindrical enclosure of height H and radius r0. The PCM 
is assumed to be initially at its fusion temperature Tf,, thus eliminating the need for solution of 
the energy equation in the solid. At time t = 0, the surface temperature of the cylinder wall is 
raised impulsively to a prescribed temperature above the fusion point Tw > Tf.. The upper and 
lower walls of the cylinder are adiabatic. As a result, inward melting is triggered. As melting 
proceeds, the melt layer becomes thicker and natural convection sets in. A schematic of the 
physical problem is depicted in Figure 1. 

It is assumed that the thermophysical properties are constant. The Boussinesq approximation 
is invoked, i.e., liquid density variations arise only in the buoyancy source term, but are otherwise 
neglected. The liquid is Newtonian and incompressible and the flow is two-dimensional and 
symmetrical about the vertical centred axis. Volume changes and viscous dissipation are 
negligible. 

Upon the foregoing assumptions, the partial differential equations governing the transport of 
mass, momentum and energy are: 
Continuity equation: 

= 0 (1) 

Momentum equations: 

(2) 
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(3) 

Energy equation: 

(4) 

Furthermore, since no heat conduction occurs in the solid phase, all heat transferred to the 
ice-water interface is utilized for melting. Then an energy balance for the interface yields the 
following condition for the moving boundary: 

(5) 

where n is a normal coordinate to the phase interface. 
Since pressure is not a variable of interest in the present study and also to reduce the number 

of equations, the continuity and momentum equations are reformulated in terms of a stream 
function ψ and vorticity ω defined as: 

u = (6) 

v = (7) 

ω = (8) 

Taking the curl of the momentum equations (2)-(3) to eliminate pressure and introducing a 
length scale r0, a time scale r2

0/α and a temperature scale (Tw — Tf), the dimensionless governing 
equations become: 

Vorticity: 

(9) 

Stream function: 
- Rω (10) 

Energy equation: 

(11) 

Interface energy equation: 

(12) 

The coordinate n is non-dimensional. 
The source term in the vorticity transport equation is non-linear due to the nature of density 

of water. αn and βn are coefficients of the non-linear expansion, which are defined in the following 
section. 
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INVERSION PARAMETER 
To describe the non-linear variation of the density of water with temperature, an approximate 
relation for the range of 0°C to 20°C is invoked10: 

ρ = ρm[l - β(T - Tm)2] (13) 
Introducing some reference variable with subscript r, this relation becomes: 

ρ = ρr[1 - 2β1(T - I) - β2(T - Tr)2] (14) 
where 

ρr = ρm[1 - β(Tr - Tm)2] 
β1 = β2(Tr - Tm) 
β2 = β/[1 - β(Tr - Tm)2] 

To define an inversion parameter, two Rayleigh numbers are introduced: 

(Ra)1 = (15) 

(Ra)2 = (16) 

Then, an inversion parameter is defined as: 

γ = = -θm (17) 

Substituting this inversion parameter into (9), the non-linear source term becomes: 

Pr anβn(Ra)n = 2Pr(Ra)2(γ + θ) (18) 

Hereafter, we shall use γ and (Ra)2 instead of (Ra)1 and (Ra)2 and the subscript 2 will be 
omitted for the sake of clarity. 

It is worth noticing that if γ is positive, the source term will act qualitatively as in a normal 
fluid. If γ is negative, it can reduce and even cancel out the buoyancy force. By choosing a 
reference temperature Tr = Tf = 0, the range of γ is confined to — ∞ < γ < 0. Since θ is defined 
as 0 ≤ θ ≤ 1, the source term becomes negative for γ < — 1, leading to a buoyancy force in an 
opposite direction to that of a normal fluid. For — 1 < γ < 0, the source term can be either 
positive or negative depending on the dimensionless temperature θ within the melt region. Thus, 
two counter-rotating vortices can appear within the melt region at the same time, corresponding 
to the phenomenon of flow reversal. 

TRANSFORMED EQUATIONS 
As melting proceeds, the phase front moves inward while being distorted by the non-uniform 
heat fluxes along its surface. As a result, the shape of the solid-liquid interface will not coincide, 
in general, with the grid nodes of a cylindrical grid. It is then difficult to implement the discretized 
boundary conditions and attempts to solve the resulting finite-difference equations may fail to 
yield accurate and convergent solutions. 

To overcome these difficulties, body-fitted coordinates are considered. The conservation 
equations (9)—(12) are cast from the original cylindrical grid (R, Z) to a curvilinear grid (ξ, η). 
The resulting equations are more complicated but their boundary conditions are now specified 



450 YONGKE WU AND MARCEL LACROIX 

on straight boundaries and the computational grid is rectangular and uniformly spaced. 
Performing this transformation, (9)—(11) become in the (ξ, η) grid: 

Ste + Sω (19) 

(20) 

Ste + Sθ (21) 

where Ū and are contravariant velocities expressed by: 
Ū = ξrU + ξzV (22) 

= ηrU + ηzV (23) 
and 

(24) 

is the transformed Laplacian operator in cylindrical coordinates. 
The energy balance equation (12) is transformed and alternatively split into components as: 

(25) 

(26) 

To find the liquid-solid interface position, the above equations have to be integrated as a 
function of time. 
The boundary conditions in the computational space are: 

ξ = ξmin, ξ = ξmax, 

U = 0 U = 0 
V = 0 V = 0 
θ = 0 θ = 1 
ψ = 0 ψ = 0 
ω = ξrVξ - ξzUξ ω = ξrVξ - ξzUξ 
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η = η m i n a n d η = η m a x , 
U = 0 
V = 0 
ψ = 0 
ω = ηrVη - ηzUη 

g22θη + g12θξ = 0 

NUMERICAL PROCEDURE 

The governing equations (19)—(21) and (25)-(26) with the corresponding boundary conditions 
are solved numerically with a finite-difference method. A first order forward difference 
approximation is used for the time derivatives. The diffusion terms are replaced by second-order 
central difference approximations. Special attention is paid, however, to the convection terms. 
It is well known that the use of second-order central difference approximations for these terms 
may produce unstable and divergent solutions for high Peclet cell numbers (or high Rayleigh 
numbers)11. Although the use of a first-order upwind scheme may eliminate these wiggly 
solutions, it introduces truncation errors and produces significant artificial diffusion. In the 
present study, this problem is overcome by adopting a second-order upwind scheme. 

The proposed scheme has the following form: 

u = Aufi - 2 + Bufi - 1 + Cufi + Dufi + 1 + Eufi + 2 (27) 

where Au, Bu, Cu, Du and Eu are functions of u. These coefficients are defined in the Appendix. 
The resulting finite-difference scheme for the vorticity (19) and temperature equations (21) has 
the form: 

a1fi - 2,j + a2fi - 1,j + a3fi + 1,j + a4fi + 2,j + a5fi,j - 2 + a6fi,j - 1 + a7fi,j + 1 + a8fi,j + 2 + 
a9fi + 1,j + 1 + a10fi + 1,j - 1 + a11fi - 1,j - 1 + a12fi - 1,j + 1 + a13fi - j = S (28) 

Expressions for the coefficients in (28) may be found in Reference 11. This finite-difference 
equation is solved by means of an alternating penta-diagonal matrix algorithm11. For the stream 
function (20), only second-order finite differences are used and the resulting discretized equation 
is solved by a tridiagonal matrix algorithm. 

The overall calculation procedure consists of the following steps: 
1. Set initial values of all the variables Ui,j, Vi,j, ωi,j and ψi,j to zero. The initial temperatures 

are set to zero everywhere in the field except for the nodes at the heated boundary which 
are put equal to 1. 

2. Set the initial boundary grid nodes for the physical domain. 
3. Generate a new grid for the physical domain. 
4. Calculate all geometric coefficients for the transformed equations. 
5. Compute ωi,j with the current values of Ui,j, Vi,j, ψi,j and θi,j. 
6. Compute ψi,j with the updated values ωi,j. 
7. Compute Ui,j, Vi,j with the updated values ψi,j and velocity boundary conditions. 
8. Compute θi,j with the updated values Ui,j and Vi,j. 
9. Check for convergence. If satisfied, go to the next step; otherwise, go back to step 5. 
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10. Check for time to stop. If positive, stop; otherwise, go to the next step. 
11. Update x0, y0, ω0 and θ0 for the next time step. 
12. Calculate the new interface position. 
13. Perform a rezoning procedure. 
14. Go back to step 3 to begin computations for the next time step. 
Steps 3, 9 and 13 need further explanations. In step 3, a new grid is generated from the 

numerical solution of a set of two coupled non-linear elliptic partial differential equations for 
the cylindrical coordinates as a function of the curvilinear coordinates. This procedure is 
commonly used for mapping complex geometries and details concerning its implementation may 
be found in Reference 11. 

In step 9, convergence is declared when: 

||R|| ≤ 10-4 (29) 

where ||R|| is the residual for the continuity equation and when: 
||fk + 1

i,j - fk
i,j|| ≤ 10-4 (30) 

where f denotes the vorticity and temperature and k denotes the iteration number. 
According to the energy balance equation (5), the local velocity of the interface should be 

locally orthogonal to the interface. Generally, the melting is non-uniform along the interface 
because of natural convection. Therefore, the interface can become curved as the boundary is 
moving. If the interface becomes locally convex, the moving interface grid points have a tendency 
to move towards their reflex centre. As melting proceeds, the generated grids can be distorted 
and eventually the grid nodes may overlap. To overcome these difficulties, an implicit rezoning 
procedure is employed in step 13. Once the interface is determined at time level, τ + ∆Τ, a spline 
interpolation procedure is used to redistribute the boundary grid points at equal arc length 
intervals along the interface. Thereby, a proper grid network system is available for carrying 
out the calculations at time τ + ∆Τ. Further details on this rezoning procedure are given in 
Reference 11. 

RESULTS AND DISCUSSION 

The foregoing computational methodology has been thoroughly tested for natural convection 
dominated melting around a vertical heated cylinder and within a vertical cylinder heated from 
below. The numerical predictions were testified against other numerical solutions and 
experimental data11. 

To avoid computational difficulties at time τ = 0, a very thin uniform thickness melt layer 
parallel to the heated wall was assumed to exist initially. The layer thickness was chosen such 
that the Rayleigh number based on this initial gap width was small enough so that pure 
conduction could be considered as the prevailing mechanism of heat transfer. 

Following a grid refinement study and as a compromise between cost and accuracy, the 
calculations presented here were done with a grid size of 11 × 31 non-uniformly distributed 
nodes. This makes it possible to concentrate several grid points in the critical regions near 
the heated surface and near the solid-liquid interface where large temperature and vorticity 
gradients prevail. A constant time step of 10-3 was utilized in order to assure small interface 
motion from one time step to the next. No attempts were made to optimize (increase) the time 
step as melting proceeds. 

All the simulations presented here were carried out for a cylindrical enclosure with an aspect 
ratio A = 2.0 and for isothermal boundary conditions Tw ranging from 4°C to 10°C. The 
Rayleigh number was kept constant at 7 × 105. The inversion parameter γ, the Prandtl number 
Pr and the Stefan number Ste are summarized in Table 1. 
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Table I Summary of the test cases 

Parameter 

γ 
Pr 
Ste 

Tw = 4°C 

-1.0 
11.5 
0.05 

Tw = 6°C 

-0.667 
10.55 
0.075 

Tw = 8°C 

-0.5 
10.0 
0.10 

Tw = 10°C 

-0.4 
9.4 
0.125 

At early times, the melting scenario is the same for all cases. Heat transfer in the melt zone 
is predominated by conduction (the isotherms remain vertical) and the ice-water interface moves 
parallel to the heated cylinder wall. The solid-liquid interface being an isotherm itself, always 
intersects the adiabatic top and bottom boundaries at right angles. After a while, the thickness 
of the melt layer becomes large enough so that natural convection is triggered. As time passes, 
the melt layer expands and natural convection becomes the prevailing mechanism of heat transfer 
inside the melt. The intensity and the direction of the buoyancy driven flows are dependent on 
the boundary condition for the wall temperature. As a result, the local heat transfer rates along 
the solid-liquid interface are strongly perturbed and so are the movement and the shape of the 
phase front. 

Figure 2 displays the vertical velocity profiles, the streamlines and the isotherms at time 
Τ = 0.06 and for the case with Tw = 4°C. The increments between streamlines and isotherms are 
constant ranging from their minimum value to their maximum value respectively. This Figure 
depicts a unicellular flow pattern with a larger melt region in the lower part of the cylinder. 
High melting occurs at the bottom of the solid-liquid interface where warm and denser fluid 
impinges after being heated by the hot wall. As the fluid ascends along the interface, heat is 
transferred to the melting front and the liquid becomes cooler and lighter. Consequently, the 
melting rate at the bottom is significantly larger than that at the top. This recirculation behaviour 
is just the opposite to that normally observed in most fluids. 

For the case with Tw = 6°C, a dual cell flow pattern occurs (Figure 3). As water with maximum 
density is located somewhere in the melt region, two counterrotating recirculation bubbles have 
established themselves at time τ = 0.06. Since the point of maximum density (taking place at 
T = 4°C) is closer to the cylinder than to the interface, the inner recirculating eddy is stronger 
than the outer one. As a result, melting near the bottom is still faster than that near the top of 
the cylinder. 

When the surface temperature of the cylinder is further increased to Tw = 8°C, the point of 
maximum water density is located in the vertical plane midway between the cylinder surface 
and the phase front. Consequently, in the early stages of melting, the strength of both the inner 
and outer eddies is nearly the same and the phase front moves parallel to the cylinder wall 
(Figure 4). As melting progresses, the counterrotating eddies increase in size and high melting 
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occurs at the top and at the bottom of the solid-liquid interface (Figure 5). The local temperature 
gradients are clearly higher near the top and the bottom of the phase front, accounting for the 
higher melt front velocity there. 

For the case with Tw = 10°C, the region of maximum water density is displaced towards the 
interface and the outer recirculation bubble grows stronger than the inner one (Figure 6). The 
resulting flow pattern bears many resemblances with that for a normal fluid except for the 
presence of a weak counterrotating eddy near the bottom of the phase font. 

The timewise variations of the average Nusselt number at the heated wall are depicted in 
Figure 7. These Nusselt numbers were calculated from the converged temperature field at each 
time step. The results display a rapid decrease in the heat transfer rate at the early stages of 
melting. This behaviour results from transient heat conduction. As soon as natural convection 
sets in the melt, the heat transfer rate starts increasing. This is clearly shown for the case with 
Tw = 4°C and, to a lesser extent, for the case with Tw = 6°C. In both these cases, a strong 
clockwise recirculating eddy establishes itself along the phase front yielding large temperature 
gradients and therefore enhanced heat transfer rates. For the cases with Tw = 8°C and Tw = 10°C, 
counterrotating eddies prevail in the melt and the heat transfer rates continue to decrease 
monotonically. 

The effect of the flow pattern on the temporal variation of the molten volume fraction is 
depicted in Figure 8. The melting rate is maximum for Tw = 4°C and minimum for Tw = 8°C. 
Also, this fraction increases almost linearly with time once the convective motion is well 
established throughout the melt. 
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CONCLUDING REMARKS 

A numerical study of natural convection dominated melting of ice within a vertical heated 
cylinder enclosure has been conducted. The study focused on the density anomaly upon melting 
via natural convection. A robust computational methodology based on body-fitted coordinates 
was adopted for handling the complex motion and irregular shape of the time-varying solid-liquid 
interface. Results have shown that the convective flow patterns, the heat transfer rates and the 
time evolution of the phase front are strongly affected by the inversion density. A unicellular 
flow pattern, occurring at Tw = 4°C, yields maximum heat transfer and melting rates while 
multicellular flow patterns, taking place at Tw = 8°C, yield minimum heat transfer and melting 
rates. 
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APPENDIX 

Coefficients in (27) are: 

(31) 


